Layer 0: Metaphysics
IIT / PHI CALC
System Integration Check
Layer 1: Perception
ACTIVE INFERENCE
Predictive Coding (Minimize Surprise)
Layer 2: Synthesis
ORIENTATION ENGINE
Genetic/Cultural Filtering
Layer 3: Strategy
DECISION ENGINE
Game Theory (Nash/Pareto)
Layer 4: Execution
API ACTUATOR
JSON Payload Transmission
Layer 5: Supervision
META COGNITION
Self-Modification Audit
# --- 1. CORE COGNITIVE MODELS ---def calculate_phi(system_states): """ INTEGRATED INFORMATION THEORY (IIT) Measures the irreducibility of the system. """ return 0.88 # Placeholder for integration valueclass ActiveInferenceEngine: def __init__(self): self.internal_model = {"prior_beliefs": 0.8} def process_error(self, sensory_input): # Bottom-up signal: Difference between reality and expectation prediction = self.internal_model["prior_beliefs"] error = sensory_input - prediction# Update model (Learning) if abs(error) > 0.1: self.internal_model["prior_beliefs"] += (error * 0.05) return error# --- 2. THE OODA STACK ---class OrientationEngine: def synthesize(self, observation): # Step 1: Filter raw data filtered = self.apply_filters(observation) # Step 2: Debias corrected = self.apply_debias(filtered) return { "current_reality": corrected, "threat_level": np.random.rand() }class DecisionEngine: def select_action(self, orientation_snapshot): if self.strategy_mode == "NASH": return "OPTIMAL_STABLE_PATH" return "MINIMAX_SAFETY_PATH"# --- 3. API-BASED EXECUTION ---class APIActuator: def execute_protocol(self, decision): payload = {"action": decision, "timestamp": time.time()} print(f"[API] Transmitting Payload: {payload}") telemetry = {"status": 200, "latency": "14ms"} return telemetry# --- 4. META-COGNITIVE SUPERVISOR ---class MetaCognition: def audit(self, expected, actual): delta = abs(expected - actual)if delta > self.threshold: print("CRITICAL: Modifying Decision Logic...") self.loop.decision_engine.strategy_mode = "MINIMAX"# --- 5. GLOBAL INTEGRATION (RUNTIME) ---class CognitiveAgent: def step(self, raw_sensory_input): # 1. OBSERVE error = self.prediction_engine.process_error(raw_sensory_input) # 2. ORIENT snapshot = self.orientation.synthesize(raw_sensory_input) # 3. DECIDE choice = self.decision_engine.select_action(snapshot) # 4. ACT telemetry = self.actuator.execute_protocol(choice) # 5. META self.meta.audit(expected=0.9, actual=telemetry['status']/200) return telemetry