< // RETURN TO SYSTEM ROOT
SYSTEM STATUS: STANDBY
Layer 0: Metaphysics
IIT / PHI CALC
System Integration Check
Layer 1: Perception
ACTIVE INFERENCE
Predictive Coding (Minimize Surprise)
Layer 2: Synthesis
ORIENTATION ENGINE
Genetic/Cultural Filtering
Layer 3: Strategy
DECISION ENGINE
Game Theory (Nash/Pareto)
Layer 4: Execution
API ACTUATOR
JSON Payload Transmission
Layer 5: Supervision
META COGNITION
Self-Modification Audit
# --- 1. CORE COGNITIVE MODELS ---

def calculate_phi(system_states): """ INTEGRATED INFORMATION THEORY (IIT) Measures the irreducibility of the system. """ return 0.88 # Placeholder for integration value
class ActiveInferenceEngine: def __init__(self): self.internal_model = {"prior_beliefs": 0.8} def process_error(self, sensory_input): # Bottom-up signal: Difference between reality and expectation prediction = self.internal_model["prior_beliefs"] error = sensory_input - prediction
# Update model (Learning) if abs(error) > 0.1: self.internal_model["prior_beliefs"] += (error * 0.05) return error
# --- 2. THE OODA STACK ---
class OrientationEngine: def synthesize(self, observation): # Step 1: Filter raw data filtered = self.apply_filters(observation) # Step 2: Debias corrected = self.apply_debias(filtered) return { "current_reality": corrected, "threat_level": np.random.rand() }
class DecisionEngine: def select_action(self, orientation_snapshot): if self.strategy_mode == "NASH": return "OPTIMAL_STABLE_PATH" return "MINIMAX_SAFETY_PATH"
# --- 3. API-BASED EXECUTION ---
class APIActuator: def execute_protocol(self, decision): payload = {"action": decision, "timestamp": time.time()} print(f"[API] Transmitting Payload: {payload}") telemetry = {"status": 200, "latency": "14ms"} return telemetry
# --- 4. META-COGNITIVE SUPERVISOR ---
class MetaCognition: def audit(self, expected, actual): delta = abs(expected - actual)
if delta > self.threshold: print("CRITICAL: Modifying Decision Logic...") self.loop.decision_engine.strategy_mode = "MINIMAX"
# --- 5. GLOBAL INTEGRATION (RUNTIME) ---
class CognitiveAgent: def step(self, raw_sensory_input): # 1. OBSERVE error = self.prediction_engine.process_error(raw_sensory_input) # 2. ORIENT snapshot = self.orientation.synthesize(raw_sensory_input) # 3. DECIDE choice = self.decision_engine.select_action(snapshot) # 4. ACT telemetry = self.actuator.execute_protocol(choice) # 5. META self.meta.audit(expected=0.9, actual=telemetry['status']/200) return telemetry
Cognitive Roadmap Pseudocode Text File
> SYSTEM ARCHITECT
Lance Akutan 1997
Lance Guitar 2000
Lance Ryegrass 2013
Lance Desert 2024
Lance Miller is the architect of lancemiller.org. His operational history includes a winter-over in Antarctica (Operation Deepfreeze '96, Congressional Medal), four years in the Alaskan fishing industry (Bering Sea, '99), and fighting the historic Biscuit Fire in the Siskiyou Mountains (2002). Holding a B.S. (2003), he later served as a Test Engineer on a technology team that won an Emmy Award (2008). Based in Seattle, he now merges Unix philosophy with theology to decode the Western Tradition.
[ X.COM PROFILE ]
Lance Miller Full View